TRIGONOMETRICAL EQUATION

(KEY CONCEPTS + SOLVED EXAMPLES)

-TRIGONOMETRICAL EQUATION-

1. Definitions
2. Periodic Function
3. General solution of standard, Trigonometrical Equations
4. General solutions of square of the trigonometrical equations for your revision.

1. Definition

An equation containing trigonometric function of unknown angles are known as trigonometric equations.

Ex. $\cos \theta=\frac{1}{2}, \tan \theta=\frac{1}{\sqrt{3}}$ and $\sin \theta=\frac{1}{2}$ etc. are trigonometric equations.

2. Periodic Function

A function $f(x)$ is said to be periodic if there exists $T>0$ such that $f(x+T)=f(x)$ for all x in the domain of definitions of $f(x)$. If T is the smallest positive real numbers such that $f(x+T)=f(x)$, then it is called the period of $f(x)$.

The period of $\sin x, \cos x, \sec x, \operatorname{cosec} x$ is 2π and period of $\tan x$ and $\cot x$ is π.

3. General solution of standard trigonometrical equation

Since Trigonometrical functions are periodic functions, therefore, solutions of Trigonometrical equations can be generalised with the help of periodicity of Trigonometrical functions. The solution consisting of all possible solutions of a Trigonometrical equation is called its general solution.

3.1 General Solution of the equation $\sin \theta=0$:

By Graphical approach,

The above graph of $\sin \theta$ clearly shows that $\sin \theta=0$ at
$\theta=0, \pm \pi, \pm 2 \pi, \pm 3 \pi$ \qquad
$\sin \theta=0$ is
$\theta=\mathrm{n} \pi \quad: \mathrm{n} \in \mathrm{I}$ i.e. $\mathrm{n}=0, \pm 1, \pm 2$ \qquad
3.2 General solution of $\cos \boldsymbol{\theta}=0$:

By graphical approach,

The above graph of $\cos \theta$ clearly shows that $\cos \theta=0$ at
$\theta= \pm \pi / 2, \pm 3 \pi / 2, \pm 5 \pi / 2, \ldots \ldots \ldots .$.
$\cos \theta=0$
$\theta=(2 n+1) \pi / 2, n \in I$.
i.e. $n=0, \pm 1, \pm 2$ \qquad

3.3 General solution of $\tan \theta=0$:

Proof: If $\tan \theta=0$
or $\frac{\sin \theta}{\cos \theta}=0$

$$
\sin \theta=0
$$

it follows that general solution of $\tan \theta=0$ it same as of $\sin \theta=0$
general solution of $\tan \theta=0$ is

$$
\theta=\mathrm{n} \pi ; \mathrm{n} \in \mathrm{I}
$$

Note : General solution of $\sec \theta=0$ and $\operatorname{cosec} \theta=0$ does not exist because $\sec \theta$ and $\operatorname{cosec} \theta$ can never be equal to 0 .
3.4 General solution of the equation
$\sin \theta=\sin \alpha:$
is $\theta=\mathrm{n} \pi+(-1)^{\mathrm{n}} \alpha ; \mathrm{n} \in \mathrm{I}$
3.5 General solution of the equation
$\boldsymbol{\operatorname { c o s }} \theta=\boldsymbol{\operatorname { c o s }} \alpha:$
is $\quad \theta=2 \mathrm{n} \pi \pm \alpha, \mathrm{n} \in \mathrm{I}$
3.6 General solution of the equation
$\boldsymbol{\operatorname { t a n }} \theta=\boldsymbol{\operatorname { t a n }} \alpha:$
is $\theta=\mathrm{n} \pi+\alpha ; \mathrm{n} \in \mathrm{I}$

4. General solution of square of the trigonometrical equations

4.1 General solution of $\sin ^{2} \theta=\sin ^{2} \alpha$
is $\theta=n \pi \pm \alpha \quad ; n \in I$
4.2 General solution of $\cos ^{2} \theta=\cos ^{2} \alpha$
is $\theta=n \pi \pm \alpha \quad ; n \in I$
4.3 General solution of $\tan ^{2} \theta=\tan ^{2} \alpha$:

If $\tan ^{2} \theta=\tan ^{2} \alpha$
$\Rightarrow \theta=\mathrm{n} \pi \pm \alpha \quad ; \mathrm{n} \in \mathrm{I}$

SOLVED EXAMPLES

Ex. 1 If $\cos 3 \mathrm{x}=-1$, where $0^{\circ} \leq \mathrm{x} \leq 360^{\circ}$, then $\mathrm{x}=$
(A) $60^{\circ}, 180^{\circ}, 300^{\circ}$
(B) 180°
(C) $60^{\circ}, 180^{\circ}$
(D) $180^{\circ}, 300^{\circ}$

Sol. If $\cos 3 x=-1=\cos (2 n+1) \pi$
or, $\quad 3 \mathrm{x}=(2 \mathrm{n}+1) \pi$

$$
\mathrm{x}=(2 \mathrm{n}+1) \frac{\pi}{3}
$$

i.e., $\quad \mathrm{x}=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$

Ans.[A]

Ex. 2 If $\sin 3 \theta=\sin \theta$, then the general value of θ is
(A) $2 n \pi,(2 n+1) \frac{\pi}{3}$
(B) $n \pi,(2 n+1) \frac{\pi}{4}$
(C) $n \pi,(2 n+1) \frac{\pi}{3}$
(D) None of these

Sol. $\sin 3 \theta=\sin \theta$
or, $3 \theta=\mathrm{m} \pi+(-1)^{\mathrm{m}} \theta$
For (m) even i.e. $m=2 n$,
then $\theta=\frac{2 \mathrm{n} \pi}{2}=\mathrm{n} \pi$
and for (m) odd \quad i.e. $m=(2 n+1)$
or, $\quad \theta=(2 n+1) \frac{\pi}{4}$
Ans.[B]

Ex. 3 The number of solutions of equation,
in $5 x \cos 3 x=\sin 6 x \cos 2 x$, in the interval $[0, \pi]$ are -
(A) 3
(B) 4
(C) 5
(D) 6

Sol. The given equation can be written as
$\frac{1}{2}(\sin 8 \mathrm{x}+\sin 2 \mathrm{x})=\frac{1}{2}(\sin 8 \mathrm{x}+\sin 4 \mathrm{x})$
or, $\sin 2 x-\sin 4 x$
$\Rightarrow-2 \sin x \cos 3 x=0$
Hence $\sin x=0$ or $\cos 3 x=0$.
That is, $x=n \pi(n \in I)$, or $3 x=k \pi+\frac{\pi}{2}$

$$
(\mathrm{k} \in \mathrm{I})
$$

Therefore, since $x \in[0, \pi]$, the given equation is satisfied if $x=0, \pi, \frac{\pi}{6}, \frac{\pi}{2}$ or $\frac{5 \pi}{6}$. Ans.[C]

Ex. 4 The number of solutions of the equation $5 \sec \theta-13=12 \tan \theta$ in $[0,2 \pi]$ is
(A) 2
(B) 1
(C) 4
(D) 0

Sol. $5 \sec \theta-13=12 \tan \theta$
or, $13 \cos \theta+12 \sin \theta=5$
or, $\frac{13}{\sqrt{13^{2}+12^{2}}} \cos \theta+\frac{12}{\sqrt{13^{2}+12^{2}}} \sin \theta$

$$
=\frac{5}{\sqrt{13^{2}+12^{2}}}
$$

or, $\cos (\theta-\alpha)=\frac{5}{\sqrt{313}}$,
where $\cos \alpha=\frac{13}{\sqrt{313}}$
$\therefore \quad \theta=2 \mathrm{n} \pi \pm \cos ^{-1} \frac{5}{\sqrt{313}}+\alpha$
$=2 \mathrm{n} \pi \pm \cos ^{-1} \frac{5}{\sqrt{313}}+\cos ^{-1} \frac{13}{\sqrt{313}}$
As $\cos ^{-1} \frac{5}{\sqrt{313}}>\cos ^{-1} \frac{13}{\sqrt{313}}$,
then $\theta \in[0,2 \pi]$, when $n=0$ (0 ne value, taking positive sign) and when $\mathrm{n}=1$
(One value, taking negative sign.) Ans.[A]
Ex. 5 The general solution of
$\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right)$ is -
(A) $\theta=2 \mathrm{r} \pi+\frac{\pi}{2}, r \in \mathrm{Z}$
(B) $\theta=2 \mathrm{r} \pi, \mathrm{r} \in \mathrm{Z}$
(C) $\theta=2 \mathrm{r} \pi+\frac{\pi}{2}$ and $\theta=2 \mathrm{r} \pi, \mathrm{r} \in \mathrm{Z}$
(D) None of these

Sol. We have, $\tan \left(\frac{\pi}{2} \sin \theta\right)=\cot \left(\frac{\pi}{2} \cos \theta\right)$
$\Rightarrow \tan \left(\frac{\pi}{2} \sin \theta\right)=\tan \left(\frac{\pi}{2}-\frac{\pi}{2} \cos \theta\right)$
$\Rightarrow \frac{\pi}{2} \sin \theta=\mathrm{r} \pi+\frac{\pi}{2}-\frac{\pi}{2} \cos \theta, \mathrm{r} \in \mathrm{Z}$
$\Rightarrow \sin \theta+\cos \theta=(2 r+1), r \in Z$
$\Rightarrow \frac{1}{\sqrt{2}} \sin \theta+\frac{1}{\sqrt{2}} \cos \theta=\frac{2 r+1}{\sqrt{2}}, r \in Z$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{2 \mathrm{r}+1}{\sqrt{2}}, \mathrm{r} \in \mathrm{Z}$
$\Rightarrow \cos \left(\theta-\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$
$\Rightarrow \theta-\frac{\pi}{4}=2 \mathrm{r} \pi \pm \frac{\pi}{4}, \mathrm{r} \in \mathrm{Z}$
$\Rightarrow \theta=2 \mathrm{r} \pi \pm \frac{\pi}{4}+\frac{\pi}{4}, \mathrm{r} \in \mathrm{Z}$
$\Rightarrow \theta=2 \mathrm{r} \pi, 2 \mathrm{r} \pi+\frac{\pi}{2}, \mathrm{r} \in \mathrm{Z}$
But $\theta=2 \mathrm{r} \pi+\frac{\pi}{2}, \mathrm{r} \in \mathrm{Z}$ gives extraneous roots as it does not satisfy the given equation. Therefore $\theta=2 \mathrm{r} \pi, \mathrm{r} \in \mathrm{Z}$

Ans.[B]
Ex. 6 The general solution of the equation
$\sec 4 \theta-\sec 2 \theta=2$ is -
(A) $(2 \mathrm{n}+1) \frac{\pi}{2}, \mathrm{n} \pi+\frac{\pi}{10}$
(B) $(2 \mathrm{n}+1) \frac{\pi}{2},(2 \mathrm{n}+1) \frac{\pi}{16}$
(C) $(2 n-1) \frac{\pi}{2},(2 n+1) \frac{\pi}{4}$
(D) $(2 n+1) \frac{\pi}{2},(2 n+1) \frac{\pi}{10}$

Sol. Given equation is, $\sec 4 \theta-\sec 2 \theta=2$
or, $\frac{1}{\cos 4 \theta}-\frac{1}{\cos 2 \theta}=2, \cos 4 \theta \neq 0, \cos 2 \theta \neq 0$
or, $\cos 2 \theta-\cos 4 \theta=2 \cos 4 \theta \cos 2 \theta$
or, $\cos 2 \theta-\cos 4 \theta=\cos 6 \theta+\cos 2 \theta$
or, $\cos 6 \theta+\cos 4 \theta=0$
or $2 \cos 5 \theta \cos \theta=0$
\therefore either $\cos 5 \theta=0$ or $\cos \theta=0$
If $\cos 5 \theta=0$, then $5 \theta=(2 n+1) \pi / 2$
or, $\theta=(2 n+1) \pi / 10$, where $n \in I$.
\& if $\cos \theta=0$, then $\theta=(2 n+1) \pi / 2$, where $n \in I$. obviously for $\theta=(2 n+1) \pi / 2$ and $\theta=(2 n+1) \pi / 10, \cos 2 \theta$ or $\cos 4 \theta$ are not zero Hence $\theta=(2 \mathrm{n}+1) \pi / 2,(2 \mathrm{n}+1) \pi / 10$ are the general solutions of the given equation. Ans.[D]

Ex. 7 The general solution of the equation $\sin ^{4} x+\cos ^{4} x=\sin x \cos x$ is-
(A) $\left(\frac{2 n+1}{4}\right) \pi ; \mathrm{n} \in \mathrm{I}$
(B) $\left(\frac{4 \mathrm{n}+1}{4}\right) \pi ; \mathrm{n} \in \mathrm{I}$
(C) $2 \mathrm{n} \pi+\frac{\pi}{4} ; \mathrm{n} \in \mathrm{I}$
(D) $\mathrm{n} \pi-\frac{\pi}{4} ; \mathrm{n} \in \mathrm{I}$

Sol. The given equation can be written as
$4 \sin ^{4} x+4 \cos ^{4} x=4 \sin x \cos x$
or, $(1-\cos 2 x)^{2}+(1+\cos 2 x)^{2}=2 \sin 2 x$
or, $2\left(1+\cos ^{2} 2 x\right)=2 \sin 2 x$
$\Rightarrow 1+\cos ^{2} 2 \mathrm{x}=\sin 2 \mathrm{x}$
or, $1+1-\sin ^{2} 2 x=\sin 2 x$
$\Rightarrow \sin ^{2} 2 \mathrm{x}+\sin 2 \mathrm{x}=2$

This relation is possible if and only if $\sin 2 \mathrm{x}=1$
or, $2 \mathrm{x}=2 \mathrm{n} \pi+\frac{\pi}{2} \Rightarrow \mathrm{x}=\mathrm{n} \pi+\frac{\pi}{4}$

$$
=\frac{(4 \mathrm{n}+1) \pi}{4}(\mathrm{n} \in \mathrm{I})
$$

Ans.[B]
Ex. 8 The number of solutions of the equation $|\cot x|=\cot x+\frac{1}{\sin x}(0 \leq x \leq 2 \pi)$ is -
(A) 0
(B) 1
(C) 2
(D) 3

Sol. If $\cot x>0$
then $\frac{1}{\sin x}=0$ (impossible)
Now if $\cot \mathrm{x}<0$
then $-\cot x=\cot x+\frac{1}{\sin x}$
$\Rightarrow \frac{2 \cos x+1}{\sin x}=0$
$\Rightarrow \cos x=-\frac{1}{2}$
$\Rightarrow \cos x=\cos \left(\frac{2 \pi}{3}\right)$
$\mathrm{x}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3} ; \mathrm{n} \in \mathrm{I}$ and $0 \leq \mathrm{x} \leq 2 \pi$
then $\mathrm{x}=\frac{2 \pi}{3}, \frac{4 \pi}{3}$
Ans.[C]

Ex. 9 Let n be positive integer such that
$\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\frac{\sqrt{n}}{2}$. Then -
(A) $6 \leq \mathrm{n} \leq 8$
(B) $4<\mathrm{n} \leq 8$
(C) $6 \leq \mathrm{n} \leq 8$
(D) $4<\mathrm{n}<8$

Sol.
$\sin \frac{\pi}{2 n}+\cos \frac{\pi}{2 n}=\sqrt{2} \sin \left(\frac{\pi}{2 n}+\frac{\pi}{4}\right)$
or, $\sin \left(\frac{\pi}{2 n}+\frac{\pi}{4}\right)=\frac{\sqrt{n}}{2 \sqrt{2}}$
since $\frac{\pi}{4}<\frac{\pi}{2 n}+\frac{\pi}{4}<\frac{3 \pi}{4}$ for $n>1$
or, $\quad \frac{1}{\sqrt{2}}<\frac{\sqrt{\mathrm{n}}}{2 \sqrt{2}} \leq 1$
or, $2<\sqrt{\mathrm{n}} \leq 2 \sqrt{2}$
or, $4<\mathrm{n} \leq 8$.
If $n=1$, L.H.S. $=1$, R.H.S. $=1 / 2$
Similarly for $\mathrm{n}=8, \sin \left(\frac{\pi}{16}+\frac{\pi}{4}\right) \neq 1$
$\therefore \quad 4<\mathrm{n}<8$
Ans.[D]

